

El Salvador y el COVID-19: Datos, modelos y perspectivas 2º Simulación a 90 días

Un reporte del Instituto de Ciencia, Tecnología e Innovación

8 de abril de 2020

<u>Equipo</u>

- Trabajo coordinado por el Instituto de Ciencia, Tecnología e Innovación (ICTI) Con el aporte de:
- James Humberstone
- Javier Cladellas
- Óscar Luna
- Roberto Vidrí
- Helga Cuéllar
- Óscar Picardo Joao (Coordinador)

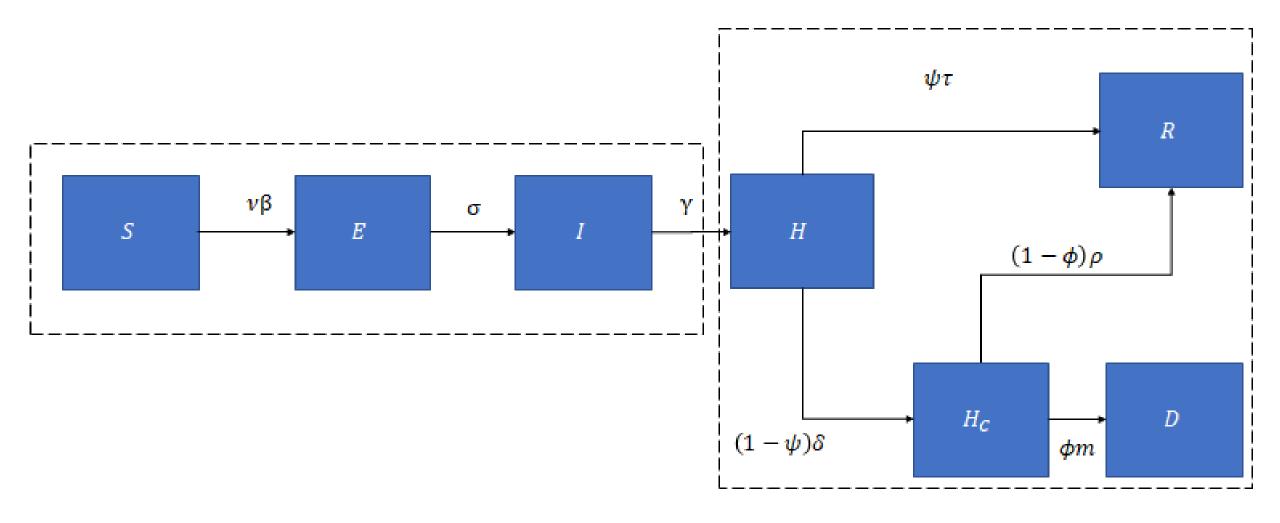
Agradecemos la asesoría de:

- Carlos Castillo Chávez, Brown University
- Carlos Hernández,
 Universidad de Colima
- Juan Aparicio, Universidad de Salta

Nota hermenéutica del modelo

- Esta segunda simulación, ayuda a "calibrar y ubicar" mejor los escenarios posibles de la evolución de la pandemia en El Salvador.
- En primer lugar, hemos eliminado las condiciones de <u>aislamiento bajo</u>, ya que en el país se están cumpliendo ciertas condiciones importantes, tales como el cierre de aeropuerto, cierre migratorio y cuarentena.
- Movimos nuestro criterio de interpretación de la simulación inicial de 60 días: desde el escenario crítico al <u>escenario moderado</u>, ya que la evolución de contagios a 21 días del primer caso marcan una tendencia.
- El escenario crítico a 90 días ha cambiado sustancialmente, pero puede ser irreal conforme a la tendencia y evolución de casos.

El Modelo SIR (SEIR, SEIS)


- Siguiendo las pautas de instituciones prestigiosas y rigurosas (London Business School; The economics of a pandemic: the case of COVID-19; p.28)
 - El modelo SIR es adecuado para analizar las tendencias y evolución epidemiológicas.
- El modelo **SIR** (W. O. Kermack y A. G. McKendrick, 1927) considera una enfermedad que se desarrolla a lo largo del tiempo y únicamente tres clases de individuos (de donde proviene el nombre):
 - S Individuos susceptibles, es decir, aquellos que no han enfermado anteriormente y por lo tanto pueden resultar infectados al entrar en contacto con la enfermedad.
 - I Individuos infectados y por lo tanto en condiciones de transmitir la enfermedad a los del grupo S.
 - R Individuos recuperados de la enfermedad, y que ya no están en condiciones ni de enfermar nuevamente ni de transmitir la enfermedad a otros.
- Modelo SEIS considera una nueva clase de individuos:
 - E (del inglés exposed): aquellos que portan la enfermedad pero que al hallarse en su periodo de incubación no muestran síntomas y pueden o no estar en condición de infectar a otros.
- Modelo SEIR Derivado del modelo SEIS, agrega R: población de recuperados.

Datos del modelo: Variables

Símb olo	Descripción	VALOR
S	Población susceptible en el país.	6,581,859
E	Población expuesta.	50
ī	Población infecciosa.	1
R	Población recuperada. Ya no poseen síntomas y están completamente curados de la enfermedad.	9
н	Población hospitalizada. Personas que dieron positivo en la prueba de COVID-19 y están completamente aisladas, bajo supervisión o cuidado médico.	72
НС	Población en cuidados intensivos. Personas severamente enfermas por coronavirus que están bajo atención médica en UCI.	7
D	Población fallecida. Individuos que murieron en consecuencia de estar enfermos por COVID-19.	5

Símbolo	Descripción	Escenario optimista	Escenario Moderado	Escenario Crítico
β	Tasa de transmisión del COVID-19. Estimada (mundialmente) a partir de los datos de https://www.worldometers.info/coronavirus/	1.1897	1.1897	1.1897
σ-1	Tiempo promedio de incubación del virus. (OMS)	5.2	5.2	5.2
γ-1	Tiempo promedio (en días) que tarda una persona enferma en libertad en ser aislada.	1.26	2.1	3.36
τ-1	Período promedio (en días) en que un individuo pasa hospitalizado antes de recuperarse.	12.74	11.9	10.64
ρ-1	Tiempo promedio que tarda una persona en cuidados intensivos en pasar a cuidados intermedios.	8.74	7.9	6.64
δ-1	Tiempo promedio que tarda un individuo hospitalizado en ser ingresado a cuidados intensivos.	3	3	3
m ⁻¹	Esperanza de vida de individuos en cuidados intensivos. (33-gamma-delta)	25.14	24.3	23.04
V	Efectividad de aislamiento en el país, excluyendo los albergues.	0.7, 0.77, 0.83	0.46, 0.58, 0.7	0.32, 0.47, 0.62
ψ	Proporción de población hospitalizada que se recupera en totalidad de la enfermedad.	0.95	0.95	0.95
φ	Proporción de individuos en cuidados intensivos que mueren de coronavirus.	0.09	0.09	0.09

Datos del modelo

Ecuaciones del modelo

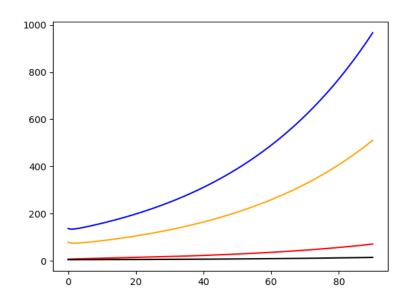
$$\bullet S' = -\nu \beta \frac{IS}{T} \tag{1}$$

$$\bullet E' = \nu \beta \frac{IS}{T} - \sigma E \tag{2}$$

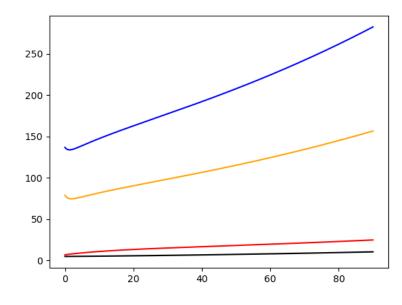
$$\bullet I' = \sigma E - \gamma I \tag{3}$$

$$\bullet H' = \gamma I - (\psi \tau + (1 - \psi)\delta)H \tag{4}$$

$$\bullet R' = \psi \tau H + (1 - \phi) \rho H_C \tag{5}$$


$$\bullet \ H_C' = (1 - \psi)\delta H - ((1 - \phi)\rho + \phi m)H_C \tag{6}$$

$$\bullet \ D' = \phi m H_C \tag{7}$$


Escenario 1: Optimista

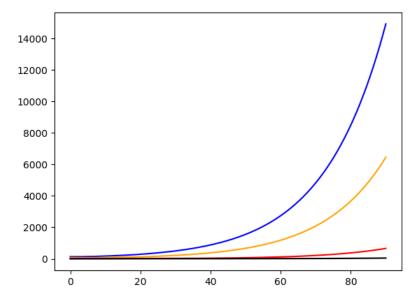
Nota: Las medidas de aislamiento tomadas por el gobierno (cierre de aeropuerto, cierre migratorio y cuarentena) nos llevan a un escenario de aislamiento medio o alto; se suprime el nivel bajo.

Efectividad de aislamiento: media

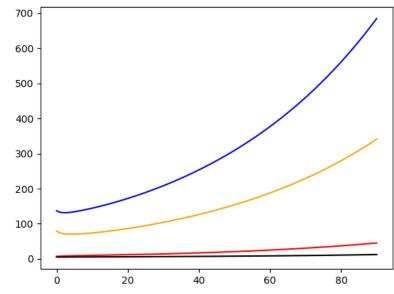
Efectividad de aislamiento: alta

Al cabo de 90 días habrá:

- **966** infectados
- 511 personas serían hospitalizadas
- 71 pasarían a UCI
- 15 podrían fallecer


Al cabo de 90 días habrá:

- 283 infectados
- 157 personas serían hospitalizadas
- 25 pasarían UCI
- 11 podrían fallecer.


Escenario 2: Moderado

Nota: Las medidas de aislamiento tomadas por el gobierno (cierre de aeropuerto, cierre migratorio y cuarentena) nos llevan a un escenario de aislamiento medio o alto; se suprime el nivel bajo.

Efectividad de aislamiento: media

Efectividad de aislamiento: alta

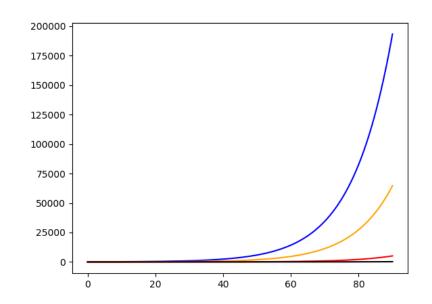
Nuestra lectura recomendada!!!

Al cabo de 90 días habrá:

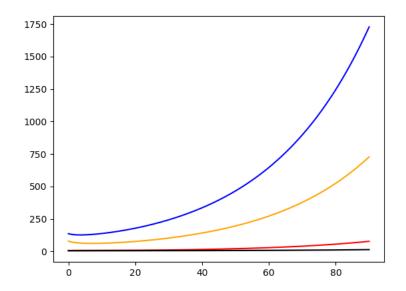
- **14,916** infectados
- 6,450 personas serían hospitalizadas
- 662 pasarían a UCI
- 48 personas podrían fallecer

Al cabo de 90 días habrá:

- 685 infectados
- **341** personas serían hospitalizadas
- 45 pasarían a UCI
- 12 personas podrían fallecer


Total Infectados — Hospitalizados — UCI — Muertes

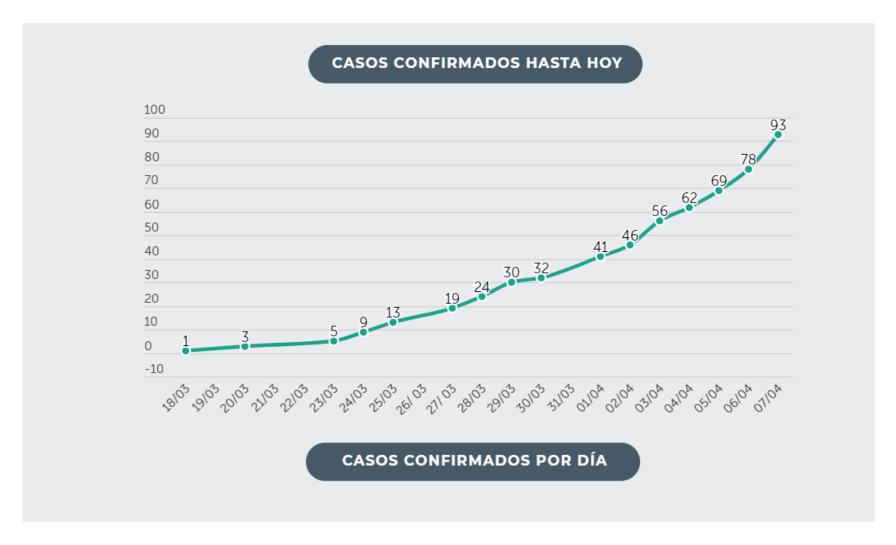
Escenario 3: Crítico


Efectividad de aislamiento: baja

Nota: Las medidas de aislamiento tomadas por el gobierno (cierre de aeropuerto, cierre migratorio y cuarentena) nos llevan a un escenario de aislamiento medio o alto; se suprime el nivel bajo.

Efectividad de aislamiento: media

Efectividad de aislamiento: alta


Al cabo de 90 días habrá:

- **193,439** infectados
- 64,675 personas serían hospitalizadas
 5,155 pasarían UCI
- 235 personas podrían fallecer

Al cabo de 90 días habrá:

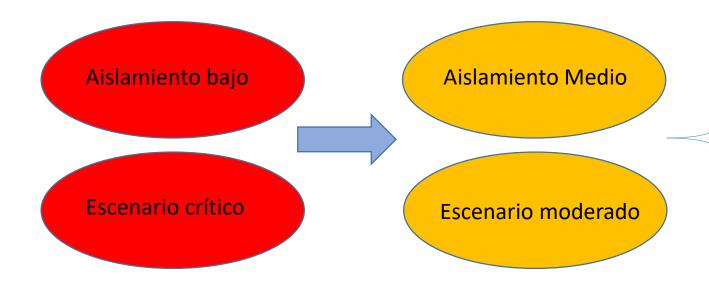
- 1,728 infectados
- 728 personas serían hospitalizadas
- 78 pasarían a UCI
- 14 personas podrían fallecer

Evolución de contagios

Fuente: GOES. Ver: covid19.gob.sv

Capacidad del sistema de salud

ISSS y MINSAL (mayor tamaño y cobertura. Aprox. 90% de la capacidad de todo el sistema)


	Actual	Escenario moderado/medio: requerimiento en 90 días*	Brecha
Camas	6,557	6450	107
Camas de UCI	238	662	-424
Médicos generales o residentes	3,587	1075	2512
Intensivistas**	60	166	-106
Enfermeras	4,605	1613	2993

^{*} Se asume 1 médico por 6 camas, 1 intensivista por 4 camas y 1 enfermera por 4 camas. Todos trabajando en turnos de 8 horas

Fuente: cálculos propios con base en datos de ISSS y MINSAL 2018.

^{**} El número de intensivistas de MINSAL se estimó en 37, pero podrían ser menos. No fue posible encontrar información de otros especialistas que se requieren, por ejemplo: neumólogos y técnicos de terapia respiratoria.

Resultados del ajuste

Al comparar con la simulación de 60 días:

Disminuyen las necesidades de modo generalizado.

Se mantienen las brechas de UCI y médicos intensivistas.

Menos presión para planificar, pero hay necesidades urgentes.

El reto mayor es equipar UCI para disminuir el impacto en decesos.