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Antibiotic-resistant bacteria cause a number of infections in hospitals and are considered a threat to public
health. A strategy suggested to curb the development of resistant hospital-acquired infections is antimi-
crobial cycling, in which antibiotic classes are alternated over time. This can be compared with a mixing
programme in which, when given two drugs, half of the physicians prescribe one drug over the other. A
mathematical model of antimicrobial cycling in a hospital population setting is developed to evaluate the
efficacy of a cycling programme with an emphasis on reducing the emergence and significance of dual
resistance. The model also considers the effects of physician compliance and isolating patients harbouring
dual-resistant bacteria. Simulation results show that the optimal antimicrobial drug usage programme in
hospital populations depends upon the type of resistance being targeted for treatment; a cycling programme
is more effective against dual resistance compared with mixing. Patient isolation and high compliance to a
cycling programme is also shown to dramatically decrease dual resistance in hospitalized populations. Ulti-
mately, the exclusive use of antimicrobials in fighting nosocomial infection does not solve the problem but
just slows down what appears to be a losing battle against drug resistance. We hope that this paper serves to
instigate discussion on the many dimensions of the complex problem of drug resistance in hospital settings.

Keywords: nosocomial; model; antimicrobial; cycling; isolation; resistance

1. Introduction

Hospital-acquired (nosocomial) infections are dangerous; their increasing prevalence results in
higher healthcare expenses, and facilitates the evolution of drug resistance. Nosocomial infections
lengthen hospital stays and morbidity. The spread of infection is of particular concern in hospitals,
where diseased people with weakened immune systems are situated in close proximity [31].

The problem of acquired hospital infections has gained prominence because of the tremen-
dous growth of resistance to antibiotics. Antibiotic-resistant bacteria are transmitted between
patients in hospitals primarily through contamination of hospital equipment, surfaces, and human
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28 K. Chow et al.

vectors [24]. Antibiotic-susceptible bacteria are being replaced by resistant organisms. Further,
the lack of new antimicrobials threatens a return to a pre-antibiotic era where current antibiotics
are rendered useless [6,27]. The proper management of the limited number of antimicrobial drugs
is central to our effort to sustain a viable and efficient drug supply.

Antibiotics themselves are the driving force for the rise and persistence of resistance within
hospital settings. Resistance could theoretically be reduced by cutting down the overall use of
antibiotics, controlling the spread of bacteria, using antiseptics and disinfectants more effectively,
developing antibiotics that do not select for resistance, reducing hospital stays, and monitoring
healthcare workers that may be carrying antibiotic-resistant nosocomial pathogens [19], but the
implementation of these tactics is challenging. Several interventions like these have been proposed
for limiting nosocomial transmission, particularly with the goal of slowing down the spread of
antibiotic-resistant bacteria through the reduction of bacterial transmission within a hospital. Some
have proposed to stop the use of all antibiotics, though this is not considered a practical solu-
tion [20]. Using cocktails and synergistic combinations of drugs could be promising in changing
treatment dosage, such as combining beta-lactams or aminoglycosides with vancomycin to treat
methicillin-resistant Staphylococcus aureus strains, but more studies need to be done on this [25].

Additional factors that may contribute to resistant infections in hospitals include hospital archi-
tecture, patient movement and interaction, and exposure of patients to visitors and even plants
and flowers. Single rooms with private bathrooms and priority assignments for infectious patients,
as well as controlled air flow and movement, could be key to limiting the transmission to unin-
fected patients. Visitors have been identified as being the source of nosocomial infections and
should perhaps be screened for infectious diseases prior to entering the ward [28]. Plants treated
with antibiotics have led to the emergence of plant pathogens resistant to antibiotics such as
streptomycin-resistant Pseudomonas. Although few studies have investigated the relevance of
antibiotic use in plant agriculture to the problem of resistance in human medicine, it remains a
concern in the medical community [21]. Hence, buying flowers at the hospital store before visiting
a patient may not be safe. There are a multitude of issues involving the medical, cultural, and
ethical aspects of the drug resistance problem in hospitals that need to be addressed, and this study
hopes to provoke discussion of these concerns.

A proposed strategy to slow the evolution and spread of resistant strains of pathogenic bacteria
is to alternate antibiotics, using a policy where empiric, or first-line, antibiotics are alternated over
a span of time from months to years. Typically, a primary treatment of infections by one class of
antibiotics (e.g. aminoglycosides) is used for some period of time until resistance increases; then,
the policy calls for switching to a second class of antibiotics for which resistance is rare or absent.
This is particularly important in intensive care units (ICUs) where patients are in close contact with
one another for prolonged periods of time and where they are often exposed to broad-spectrum
antibiotics (e.g. levofloxacin). The cycling strategy is dependent upon the relationship between a
particular antibiotic and the level of resistance to the drug. A mixing protocol, on the other hand,
is a programme in which physicians will randomly prescribe one drug over the other, serving as
a reasonable comparison with cycling [7,20].

The implementation of any intervention requires an adequate level of compliance by both
patients and physicians. Physicians who have the authority to decide how a patient is treated in
the hospital play a critical role. Typically, we isolate individuals who are symptomatic (confirmed)
carriers. A successful isolation programme requires the implementation of strict hygiene practices
to limit transmission to healthcare workers, who in turn can infect patients [16]. It can be difficult
to quantify whether or not an intervention was successful or to compare interventions without any
explicit quantitative approach. Such quantitative predictions and criteria for their evaluation can
be offered through the investigation of mathematical models [7,20].

Mathematical models can be beneficial in evaluating solutions to problems involving infec-
tious disease [1,2,4,5,9,10,12,14,17,22,23,26,30,32]. They provide insight into the underlying
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Journal of Biological Dynamics 29

mechanisms that influence the spread of disease at various levels of organization, including the
population level. Simple models have been powerful tools in the identification and evaluation
of control strategies. Models also help identify behaviour difficult to glean from experimental
data [9].

Bergstrom et al. [7] developed a model to determine whether antimicrobial cycling can be
effective at controlling resistance in a hospital setting. The purpose of their study was to isolate and
illustrate fundamental ecological processes responsible for the success or failure of antimicrobial
cycling programmes. Two antimicrobial drugs were considered, and it was assumed that dual
resistance had not emerged. Their model tracked populations of patients within the hospital
according to their colonization status. By running several simulations of scenarios that compare
mixing and cycling drug programmes, they were able to show that cycling is unlikely to reduce
the carriage of resistant organisms when compared with alternative policies [7]. This manuscript
builds on their model and some of the ideas in [30] as we explore the dynamics of resistance and
dual resistance in a large population of hospitalized patients.

Although the strategy of antibiotic cycling appears promising, there is little evidence that
repeated cycling is an effective long-term strategy to reduce the emergence and spread of antibiotic
resistance. Models have been previously developed for antimicrobial cycling in a hospital setting,
and some have shown that cycling is unlikely to reduce rates of resistance [7]. However, no
work has been done on incorporating dual-resistant bacterial strains in a mathematical model of
antimicrobial cycling. The rise in strains of pathogenic bacteria resistant to multiple antibiotics
are of great concern in hospitals, as they result in more expensive drugs that may or may not
be effective against infections. Investigating the effects of resistance to multiple antibiotics in
hospitals and comparing them with the impact of focusing on a single resistance scenario may
offer further insight into the dynamics and control of nosocomial infection transmission at the
population level. Bergstrom et al.’s model implicitly looks at nosocomial infections over a rather
‘short’ temporal scale; that is, they assume that dual resistance has not yet emerged. With multiple
resistance rapidly on the rise across the globe, a model that accounts only for single resistance is
insufficient.

In this paper, we focus on the dynamics of dual resistance to antibiotics within hospital settings.
Our model is used to evaluate the efficacy of a cycling versus mixing protocols as well as the
effects of heterogeneous physician compliance and isolation interventions of various degrees of
effectiveness at the population level. This paper is organized as follows: Section 2 formulates our
mathematical model; in Section 3, model simulations are discussed with a focus on comparing
our results with those of earlier research; in Section 4, we add isolation and explore its impact
within the current dual resistance model; a discussion of our findings and their implications are
discussed in Section 5.

2. Mathematical model

The transmission dynamics of infection in the presence of dual resistance to antibiotics are mod-
elled by a system of ordinary differential equations that tracks several patient populations in
hospital settings according to their colonization status, depicted in Figure 1. It is important to
note that the model excludes the actual development of resistance through mutation since we
are interested primarily in the transmission dynamics between patients rather than the dynamics
due to conjugation and mutation at the bacterial level. In other words, the time scale and the
organizational levels of interests are driven by scenarios where the emergence of newly resistant
pathogens is unlikely. We are dealing with population level phenomena over time scales where
evolutionary shifts can be neglected.
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30 K. Chow et al.

Figure 1. Schematic of the model incorporating dual resistance and the system of differential equations which corre-
sponds to the compartmental model. All parameters are defined in Table 1. A detailed discussion of this model is found
in the appendix.

Following the (non-classic) notation in [7] , we let X group represent the proportion of patients
who are uncolonized by the bacterial species of interest. The term ‘ uncolonized’ is considered
in an epidemiological context, including patients who harbour only a bacterial population too
small to transmit to other patients, rendering patients more likely to be infected by new strains.
The S group represents the proportion of patients colonized by the bacterial species of interest
susceptible to both drugs. There are three R groups, R1, R2, and R12, representing the pro-
portions of patients colonized by strains resistant to drug 1, drug 2, and both drugs 1 and 2,
respectively.

To simplify the model, we assume that the total patient population size in the ‘hospital’ is large
(so that differential equations can be used) and that this population remains constant. Hence, the
sum of the state variables X, S, R1, R2, and R12 is one. Patients enter the hospital in any of the
states X, S, R1, R2, and R12 at rates μ(1 − m − m1 − m2 − m12), μm, μm1, μm2, and μm12 per
day. The parameter μ represents the patient turnover rate in the hospital. On average, patients
leave the hospital after staying 1/μ days. Patients colonized with susceptible bacteria and left
untreated will remain colonized, on average, for 1/γ days. Drugs 1 and 2 are used at rates τ1 and
τ2. It is assumed that any bacterial strains without resistance to any of the drugs are cleared with
drug use.

The colonization rate or primary transmission rate, proportional to the frequencies of each
strain, is described using the rate constant β. The fitness costs to bacteria are described by c1,
c2, and c12, where a lower fitness cost corresponds to a strain that is easier to spread. Fitness
cost is a biological parameter that describes the selective pressure exerted by antibiotics on a
bacterial population. In the presence of antibiotics, the resistant bacteria are at an advantage,
but the development of their resistance comes at a cost to fitness. In the absence of antibiotics,
the resistant bacteria are less fit, rendering them less able to reproduce, and thus the susceptible
bacteria are at an advantage [18]. The fitness costs c1 and c2 are assumed to be equal for single
resistant strains, and c12 is assumed to be greater as that the strain resistant to both drugs is more
difficult to spread with a smaller initial population of patients infected with the dual-resistant
strain.

The relative rate of secondary colonization to that of primary colonization is described by σ . In
order to simplify the model, we assume that individuals can only be effectively colonized by one
type of bacterium at a time. We also assume that the bacterial strains are in constant competition
with one another and that secondary colonization can only occur by colonization with more
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fit strains, since bacteria may have the capacity to mutate in response to their environmental
conditions [3]. This applies to the interaction between the single-resistant R1, R2 strains, and the
dual-resistant R12 strain. As a result, a patient can move from any resistance class to the other,
though the least likely would be from dual resistance to single resistance only, reflected in the
fitness costs. The parameter σ is multiplied by the fitness cost according to [7] since the fitness
cost of the bacteria also affects secondary colonization. The parameter α represents physician
compliance to an antibiotic therapy programme and is equal to the fraction of patients receiving
the currently indicated drug; this parameter will be used only in numerical simulations. Figure 1
includes not only the flow diagram but also the nonlinear system of differential equations used
to model the transmission dynamics of four bacteria types in a large population of hospitalized
individuals.

3. Comparison of antimicrobial cycling and mixing programmes through numerical
simulation

Numerical simulations of this model are used to explore the effects of policies for antibiotic
usage for populations in hospitals. In this paper, we focus on the effects of antimicrobial cycling
programmes relative to mixing regimes, with further assessment of the impact of physician com-
pliance and isolation interventions. Preliminary analysis of the model in the simplest case is
provided in the appendix.

An antimicrobial cycling programme alternates empiric classes of antibiotics over a given
span of time in an attempt to control the spread of resistant bacteria. An antimicrobial mixing
programme describes physicians prescribing drugs 1 and 2 to patients at random, meaning about
half of the physicians use drug 1 to treat patients and the other half of the physicians prescribe
drug 2 to patients receiving treatment. This scheme serves as a reference against which cycling is
compared.

In order to assess the impact under different usage policies, the equations are simulated using
MATLAB® under appropriate ranges for the parameter values (Table 1). Most parameter ranges
were obtained from previously published work [7,15,20], whereas other parameters were ‘guessed’
from what we considered to be reasonable values.

Table 1. The definition of parameters and references that highlight acceptable ranges are listed in this table.

Parameter Description Value References

β Per capita primary transmission rate (colonization rate) 1 day−1 [7]
σ Relative rate of secondary colonization to that of the primary

colonization ∈ (0, 1)

0.25 day−1 [7]

τi Per capita treatment rate of drug i, i = 1, 2 0.38 day−1

γ Per capita clearance rate of bacteria due to immune response 0.03 day−1 [7,20]
μ Per capita patient turnover rate in the hospital 0.10 day−1 [7,20]
m Proportion of admitted already colonized with sensitive bacteria 0.70 [7,20]
μmi Rate at which patients colonized by bacterial strains resistant to

drug i enter the hospital
0–0.07 day−1 [7]

ci Fitness cost of a bacterial strain resistant to drug i, i = 1, 2 0.05
c12 Fitness cost of a bacterial strain resistant to both drugs 1 and 2 0.15
α Physician compliance, fraction of patients receiving the currently

indicated drug in a cycling programme
0.80 [7]

η Per capita isolation rate of patients colonized by bacterial strains
resistant to both drugs 1 and 2

0.01–0.025 day−1

ε Proportion of patients effectively isolated 0.5–1 [15]

Note: The parameters listed without references were explored via simulations.
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3.1. Comparison of cycling and mixing programmes

In order to determine whether cycling is an effective strategy for reducing the spread of
antibiotic-resistant bacteria, a cycling protocol is compared with a random mixing regime. In
other words, the case when τ1 = τ2 (mixing regime) is compared with the cycling regime where
piece-wise continuous functions are used to model a regular alternating drug treatment cycle 2.

Numerical simulations of our model suggest that cycling is more effective at reducing dual
resistance than mixing. Figure 2 compares cycling and mixing protocols for the fraction of patients
colonized with bacteria resistant to both drugs 1 and 2 for cycling periods of 1 year, 3 months, and
2 weeks. As the cycling period decreases, the difference between cycling and mixing becomes
smaller since a cycling period of zero would basically correspond to a mixing programme; thus,
the smaller the period, the closer cycling approaches mixing. Cycling seems to outperform mixing
in every case, regardless of the cycling period length, in controlling dual resistance.

Figure 3 compares cycling and mixing for single resistance versus total resistance (i.e. including
R12) for cycling period lengths of 1 year, 3 months, and 2 weeks. The total resistance as a result of
both cycling and mixing remain relatively constant, that is, the fraction of the population infected
with a resistant type is around 0.7 regardless of the treatment regimes. This is significantly higher
fraction than that of just R1+R2 and it is maintained for each cycling period length. These results
further suggest that dual resistance has a greater impact on the fraction of patients colonized by
any resistant bacteria.

Figure 2. Fraction of patients carrying only dual-resistant bacteria R12 for cycle lengths of (a) 1 year, (b) 3 months, and
(c) 2 weeks. The solid lines indicate the total fraction of patients colonized with dual-resistant bacteria under cycling, and
the dashed lines indicate the total fraction of patients colonized with dual-resistant bacteria under a 50–50 mixing regime.
Parameter values are as in Table 1.

Figure 3. Fraction of patients carrying resistant bacteria for cycle lengths of (a) 1 year, (b) 3 months, and (c) 2 weeks.
Parameter values are as in Table 1.
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Figure 4. Average fractions of patients colonized by resistant bacteria as a function of cycle period. The dashed line
indicates a mixing programme, and the solid line indicates a cycling programme. Parameter values are as in Table 1.

Figure 4 shows the fraction of patients colonized by resistant bacteria over the span of one
year as a function of cycle period averaged over 1000 days. As the cycle period length increases,
R1+R2 under the cycling programme increases. The simulation outcomes for R12 go in the opposite
direction, demonstrating an advantage of a cycling programme over a mixing programme when
attempting to reduce dual resistance in hospitals. As the cycle period length increases, the fraction
of patients colonized with total resistance under a cycling programme is slightly lower than that
under a mixing programme. We did not carry out a formal sensitivity analysis but our extensive
simulations always support this pattern. Hence, we arrive at the following qualitative (based on
simulations) conclusion:

Table 1 provided some idea of an adequate range for most of the parameters used in our
simulations. However, careful studies that measure not only the values of these parameters but
also assess their variability at the population level are still missing. Hence, our simulation results
can only be used to gauge the overall patterns of resistance as a function of the treatment regime and
not as specific quantitative recommendations. Specifically we conclude that as the cycling period
decreases we recover the mixing treatment regime. The overall levels of resistance are uniformly
high (over 60%) regardless of the treatment regime; the distribution of resistant types is a function
of the treatment regime; and that if the goal is to reduce dual resistance, then cycling is better
than mixing, a point missed by single resistance models [7]; if the priority is to first treat patients
suffering from single-resistant bacterial infections, then a mixing protocol would be better.

3.2. Physician compliance

Clearly, the exclusive use of treatment regimes even if ‘properly’managed, are insufficient to dras-
tically change the levels of resistance. Unfortunately, there are additional sources of uncertainty
including the level of physicians’ compliance.

Compliance is described as the fraction of patients that receive the currently recommended drug
under a pre-selected treatment regime. When α = 1 (perfect compliance), all treated patients are
assumed to receive the recommended drug while when α = 0, half of the patients receive drug 1
and the other half receives drug 2.

Figure 5(a) shows the effect of varying the physician compliance parameter α on patients
colonized by bacteria resistant to either drug 1 or 2 over a 2-year period. The level of physicians’
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Figure 5. The effect of varying physician compliance α on (a) R1 + R2, (b) R12, and (c) R1 + R2 + R12. Physician
compliance was varied from 40 to 90% so as to compare the long-term effects of low compliance versus high compliance
over 2 years. Parameter values are as in Table 1.

compliance results in potentially dramatic shifts in resistant types. In fact, in our settings, resis-
tance levels increase when physicians are more compliant with the cycling programme. A lower
compliance level (α closer to zero) in the cycling programme essentially moves in closer to the
mixing (50–50 by nature). Thus, by administering each drug at ‘random’ (too many mistakes),
the level of R1 + R2 increases.

Figure 5(b) shows the effect of varying the physician compliance parameter α on patients
colonized by bacteria resistant to both drugs 1 and 2. As expected, lower compliance results in a
lower fitness cost. Hence, dual-resistant strains spread more easily at lower physicians’compliance
levels. Again, this reinforces the idea that a cycling programme is more effective in reducing dual
resistance.

Figure 5(c) shows the effect of varying the physician compliance parameter α on total resistance
in hospital settings. Increasing compliance results in slightly increased resistance levels. The
curves seem to converge (in our simulations). We see that 90% compliance results in the highest
resistance level, a fraction approaching 0.7. With regards to total resistance, physician compliance
with a cycling programme does not result in a dramatic shift in the number of patients colonized
with resistance in hospital settings.
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4. Isolation of patients with dual-resistant strains

Obviously, treatment is not the solution. In fact, the lack of development of new antimicrobial
drugs over the last few decades [6,27] means that our current polices are exhausting the usefulness
of a limited resource, namely antimicrobial drugs. We need a sustainable policy that extends the
life of the current fixed set of antimicrobial drugs and the only way to preserve their usefulness is
through the careful management of this limited drug supply. Hence, alternative mechanisms must
be implemented that reduces our need to deal with the challenges posed by the potential spread
of dual resistant types.

Since nosocomial transmission of antibiotic-resistant bacterial strains is driven by contact with
patients in hospitals, the isolation of infected patients may be highly effective. That is, identified
carriers of resistant bacteria can be treated in single rooms with barrier precautions [8] to restrict
contact with the rest of the patient population in hospitals. With the addition of a new class of
isolated individuals Q, our mathematical model is updated to include the isolation effect, as shown
in the following system of nonlinear differential equations:

dS

dt
= (m − S)μ − (τ1 + τ2 + γ )S + σβ

×
(

c1
R1

1 − εQ
+ c2

R2

1 − εQ
+ c12

R12 + (1 − ε)Q

1 − εQ

)
S + βS

X

1 − εQ
,

dR1

dt
= (m1 − R1)μ − (τ2 + γ )R1 + β(1 − c1)R1

X

1 − εQ
+ σβc12

R12 + (1 − ε)Q

1 − εQ
R1

− σβ

(
c1

S

1 − εQ
+ (c1 − c2)

R2

1 − εQ

)
R1,

dR2

dt
= (m2 − R2)μ − (τ1 + γ )R2 + β(1 − c2)R2

X

1 − εQ
+ σβc12

R12 + (1 − ε)Q

1 − εQ
R2

− σβ

(
c2

S

1 − εQ
+ (c2 − c1)

R1

1 − εQ

)
R2,

dR12

dt
= (m12 − R12)μ − ηR12 − γR12 + β(1 − c12)(R12 + (1 − ε)Q)

X

1 − εQ

− σβc12

(
S + (1 − c1)R1 + (1 − c2)R2

1 − εQ

)
R12,

dQ

dt
= −μQ + ηR12 − σβc12

(
S + (1 − c1)R1 + (1 − c2)R2

1 − εQ

)
((1 − ε)Q),

dX

dt
= (1 − m − m1 − m2 − m12 − X)μ + (τ1 + τ2 + γ )S + (τ2 + γ )R1 + (τ1 + γ )R2

+ γR12 − βX

(
S

1 − εQ
+ (1 − c1)

R1

1 − εQ
+ (1 − c2)

R2

1 − εQ

+(1 − c12)
R12 + (1 − ε)Q

1 − εQ

)
. (1)

The above model incorporates an isolation class Q. The per capita isolation rate η and the effi-
cacy of isolation ε are used to modulate the effect and efficacy of isolation policies. Patients who
are identified to have dual-resistant strains are isolated within the hospital. Following standard
incidence for dynamic models [11], the proportion of patients changes with ε since isolated indi-
viduals are no longer included in the adjusted population subject to patient contact (unfortunately,
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possibly increasing the likelihood of getting infected by single-resistant strains). Additionally,
leakage from Q into other compartments may occur if patients are not entirely effectively iso-
lated. This is accounted by the factor (1 − ε), such that an isolation programme that is 100%
effective will entirely eliminate the Q class from contact with the rest of the patient population.
From isolation, patients can be treated and discharged directly out of the hospital. The impact of
an isolation programme on patients undergoing an antimicrobial cycling programme is explored
through simulation.

4.1. Efficacy of isolation through numerical simulation of the model

Isolation of patients colonized with the dual-resistant strain in the hospital is a possible interven-
tion for controlling transmission by limiting patient contact. Numerical simulation of the model
incorporating isolation is shown in Figure 6, where the efficacy of isolation parameter ε was
held constant at 90%, and the isolation rate η was varied from 0.01 to 0.025. This was done to
examine the effects of varying the per capita rate of isolation on the overall population of patients
harbouring resistant bacteria in the hospital.

As the isolation rate η increased, the isolation Q class increased, and the R12 proportion of
the population decreased. Although the dual-resistant class is reduced as a result of increased
isolation rate, the single-resistant classes R1 and R2 significantly increase (not surprisingly, given
that the isolation of dual resistant types increased the likelihood of infection of single-resistant
types). Since the total population of patients in the hospital remains constant, where the sum of the
patient proportions equal one, the bacterial strains are constantly in competition with each other;
therefore, a decrease in dual-resistant strains results in an increase in single-resistant strains. As
the isolation rate increases, the proportion R12 is reduced, and thus the hospital population consists
of more single resistance, where R1 and R2 are more inclined to flourish in a cycling regime.

To examine the effects of varying isolation efficacy, η was held constant at 0.025 while ε was
varied between 50%, 90%, and 100%. The results of the simulation are shown in Figure 7. The
efficacy of isolation significantly affects the outcome of the persistence of the R12 population; as
ε increased, both Q and R12 decreased. The more effectively isolated the patients are, the lower
the levels of R12 are, and the higher the single-resistant populations R1 and R2 become. At 25%
efficacy of isolation, R12 is controlled but still maintains a fairly high fraction level of around 0.3,
outcompeting the single-resistant populations. At 100% efficacy of isolation, the R12 population
is controlled and maintained at a modest fraction level of less than 0.1.

Figure 6. The effect of varying isolation rate η on fraction of patients colonized with dual-resistant bacteria. Parameter
values are as in Table 1, with η = 0.01, 0.025 and ε = 0.9.
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Figure 7. The effect of varying isolation efficacy ε on fraction of patients colonized with dual-resistant bacteria.
Parameter values are as in Table 1, with η = 0.025 and ε = 0.5, 0.9, 1.

According to our isolation model, which incorporates isolation of R12 into the Q class, both
the isolation rate and the isolation efficacy parameter are significant factors to consider when
implementing such a programme. Isolation appears to be a potentially effective intervention
technique for controlling and maintaining lower levels of dual resistance in hospital settings, but
of course, we did not incorporate the costs or difficulties of implementing such policies in current
hospital settings.

5. Discussion

Antimicrobial usage programmes can be effective in the fight against rising antibiotic resistance
in hospitals. Our results show in addition that the battle against multiple resistance levels is
important to consider when evaluating drug usage policies. It is shown throughout this paper that an
antimicrobial cycling programme is more useful in reducing dual resistance when compared with
a random mixing regime, a fact that could not be assessed with existing models [7]. Additionally,
we found that isolation dramatically reduces the persistence of dual resistance but we did not
address the costs and logistics associated with the implementation of such programmes.

The basis of cycling is in the fluctuating selection pressures induced by regularly switching
antimicrobials, thereby affecting the ability of resistant bacteria to replace commensal bacteria
through variations in habitat and landscape changes generated by an evolving population. It is

D
ow

nl
oa

de
d 

by
 [

A
ri

zo
na

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 1
5:

05
 2

5 
N

ov
em

be
r 

20
14

 



38 K. Chow et al.

an issue of competition and displacement; drugs eliminate sensitive bacteria to effectively make
room for resistant ones. By varying the currently indicated antimicrobial drug in a hospital ward
such as the ICU, the emergence of antibiotic resistance can be minimized because pathogenic
organisms would become continually exposed to varying environments, consequently limiting
their ability to develop resistance.

However, as Bergstrom et al., previously discussed, the scale of heterogeneity of bacterial
clones in a hospital must be considered in order to assess the impact of mixing and cycling on the
levels of resistance. At a scale appropriate for bacterial populations, mixing likely induces greater
fluctuation than cycling in selective conditions, since mixing results in continual fluctuations over
shorter periods of time, while cycling offers consistent selective conditions for extended periods
of time [7].

Our model investigates cycling versus mixing antimicrobial usage policies in a hospital setting
by incorporating transmission of dual resistance, resulting in a model that can describe a more
realistic situation: the threat of multiple-resistant pathogens in an era where only so many classes
of antibiotics are available for treating patients. Previous work assumed that dual resistance had
not yet emerged and therefore did not consider the dynamics of transmission of resistance to
both drugs. Our model assumes that dual resistance is already present in the hospital, making it
possible to consider the effects of the spread of resistance for which there is no treatment.

Numerical simulations of our model clearly demonstrate the significant impact that dual-
resistant strains have on an antimicrobial cycling programme in contained hospital settings. It
was evident, as expected, that cycling of antimicrobial therapies results in a cyclic incidence of
strain frequencies. Just after switching drugs, the fraction of uncolonized patients surges upward,
demonstrating a temporary effectiveness of the antibiotic therapy; this, however, diminishes over
time, as do fractions of patients colonized by bacteria resistant to only a single drug. After a year
of a 90-day cycling programme at 80% physician compliance, the number of patients colonized
with the strain resistant to both drugs dramatically and rapidly increases, persisting as the highest
fraction level of patients. In other words, the evolutionary landscape changes dramatically with
the evolution of dual resistance and the policies or paradigms that support the implementation
of treatment regimes geared towards the reduction of single-drug resistance must be clearly
re-evaluated in the context of dual-resistance.

The bad news is that our model demonstrates that the fraction of patients colonized by strains
resistant to both drugs remains highest regardless of cycling period length. In fact, each switch of
the drug causes a brief increase in the R12 and a comparable decrease in R1+R2; the discrepancy
between the two populations increases with smaller cycle period length. The total resistance levels
remain relatively constant regardless of the length of cycle period.

Current practices in prescribing antibiotic therapies are approximated by random mixing. Our
model simulated a mixing regime under the assumption that dual resistance is already present in
hospital settings. Since mixing implies the simultaneous usage of drugs 1 and 2, part of the strains
that are resistant to only one drug are still targeted, whereas the strain resistant to both is able to
thrive. Simulated results show R12 clearly dominating at a high fraction throughout any cycling
or mixing programme, where mixing seems to result in a higher fraction of patients infected with
the dual-resistant strain than longer cycling time period lengths.

Physician compliance is particularly important when studying antibiotic resistance in devel-
oping countries. In many developing countries, several factors contribute to the development and
pervasiveness of antibiotic resistance, including a lack of regulation on drugs, quality control,
patient access to quality health care, patient non-compliance and self medication, lack of reliable
information sources for physicians, and physician misuse of antibiotics. When a patient needs
antibiotics, physicians have a choice of which antibiotic(s) to prescribe. However, especially in
developing countries, physicians tend to be overworked, underinformed, and pressured to pre-
scribe certain treatments based on availability or cost [29]. Even in developed countries, physicians
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still face pressure from pharmaceutical companies or even the patients themselves to prescribe
certain drugs. Thus, when evaluating the effects of an antimicrobial usage policy, it is important
to consider the effects of varying physician compliance.

Simulations were performed to show the outcomes that result from varying physician compli-
ance. There is great variation in the rate of increase in patients acquiring dual-resistant bacteria,
with a threshold value somewhere in between 85 and 90% compliance. At 90% physician com-
pliance, as shown in Figure 5, there is only a slight oscillation of R12 close to a fraction of zero.
It is expected that higher physician compliance would result in a lower fraction of patients col-
onized with resistant bacteria, but it is interesting to note the wide range of fractions as a result
of varying physician compliance. It is also interesting to note that the results are the opposite for
R1 + R2, meaning that higher compliance with a cycling programme is not effective in curbing
single resistance, since mixing would be the more useful protocol in that case. We cannot solve
the resistance problem just with the treatment.

The potential impact of an isolation protocol was also considered, and the model was revised
to incorporate an isolation compartment where the R12 class is subject to removal from the con-
tact population. By increasing the rate of isolation η in an antimicrobial cycling programme, the
proportion of patients colonized with dual-resistant bacterial strains was significantly reduced.
Consequently, the proportion of patients colonized with single-resistant bacteria increased. Addi-
tionally, an increase in isolation efficacy ε was shown to have a significant impact on maintaining
lower levels of R12 in the hospital, again at the cost of higher levels of R1 and R2.

These results further demonstrate the importance of establishing priorities when it comes to
treating antibiotic resistance in hospitals. Since dual-resistant bacteria are untreatable by the two
drugs available in this particular model, it would likely be most advantageous to isolate patients
with dual-resistant bacteria, even at the cost of a rise in single resistance. It is also important to keep
in mind that the effectiveness of an isolation programme depends on the timely detection of patients
eligible for isolation. Rapid diagnostic testing of those suspected to be infected with the dual-
resistant strain is necessary. Also, a major problem with nosocomial infections is asymptomatic
carriers. Patients entering the hospital may be colonized but unaware of their infectiousness,
making it difficult for the patient to be admitted into isolation. An effective patient isolation
programme must consider these issues and extended models should be used to evaluate their role.

The bottom line, evident throughout this investigation, is that dual resistance simply cannot be
ignored and cannot be controlled effectively via treatment alone. In our model, R1 + R2 and R12

are competing over the susceptible population. Controlling dual resistance is more significant in
this day and age since we face a limited supply of antibiotics; outbreaks of pathogens resistant
to multiple antibiotics could cause a significant amount of damage, especially to the health and
lives of fragile patients as in the ICU. The current mixing policy is not a bad idea, however, as
it seems to have a positive effect in reducing resistant strains, especially in the case of resistance
to only one drug. According to simulations of the model we have developed, an antimicrobial
cycling programme is more useful in reducing overall drug resistance, especially dual resistance,
and should be considered for implementation in hospital settings.

These results are based on a very particular set of assumptions. In this study, overall resistance
levels will not change, but the distribution of the proportions of resistance types will. It should
be noted that we are not focusing on any specific pathogen; specific models would be needed to
address the transmission dynamics and control of specific pathogens.

Model outcomes come from studying a simple and general scenario. We are aware that the
problem of hospital-acquired infections is complex, involving not only medical treatment, but
cultural norms and ethical issues. Some of the heterogeneities found in hospitals can have a
substantial impact on nosocomial infections. Hospital architecture can dictate the flow of patients,
healthcare workers, and visitors, as well as their interactions with each other and the inanimate
environment. At large, many patients in hospitals are already undergoing antibiotic therapy, so
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synergistic effects of drugs should be considered. Cultural norms play a role as well, evident in the
customary practice of bringing fresh flowers and plants to friends and family in hospitals. These
plants could be covered with resistant pathogens, possibly contributing to selective pressure in
hospital settings. Ethical issues should also be considered, such as the responsibility of a physician
to treat the individual as opposed to looking at the welfare of the entire population. The role of
physicians in distributing drugs must also be addressed [13,27].

This study raises certain questions about the problem of resistant pathogens in hospitals.
These questions can be addressed through mathematical models, and the greater purpose of
this paper is to instigate discussion about the many dimensions of this complex problem and
the wealth of possible methods that can be implemented to mitigate it. We will never win the
battle against antimicrobial resistance through the exclusive use of integrated microbial man-
agement approaches that focus entirely on the prescription of antibiotics. In other words, drugs
provide no silver bullet, and policies that reward their judicious use can only attempt to slow
down what appears to be a losing battle. If we insist on the exclusive use of antimicrobials to
fight nosocomial infections, then it is only a matter of time before we begin to run out of effective
antibiotics.

The model presented in this paper may be useful for understanding short-term dynamics of
resistant bacterial transmission in a hospital, but it must be stated that the model’s predictions
cannot necessarily be used to understand trends in antibiotic resistance on a longer-term or global
scale. Resistance does not end at two types of drugs; if the dynamics of dual-resistant strains
are so different from those of single-resistant strains, it may be prudent to investigate higher
orders of resistance. Nevertheless, further insight into the problem of nosocomial transmission of
antibiotic-resistant bacteria offered by this model allows for discussion of potential interventions
and policies, either locally or globally, for reducing the prevalence of hospital patients infected
with organisms resistant to multiple therapies.
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Appendix

In this appendix, we provide a limited analysis of the simplest model used in the simulations. The following constitutes
the equilibrium and stability analyses of the equations shown in Figure 1. The basic reproductive rate of susceptible
bacteria in a hypothetical institution where all hosts entered uncolonized (X), or when m = m1 = m2 = m12 = 0, can be
computed as

�S = β

τ1 + τ2 + μ + γ
. (A1)

Similarly, let �R1 , �R2 , and �R12 denote the basic reproductive rates of bacteria resistant to drug 1, drug 2, and both
drugs 1 and 2 in a hypothetical institution, respectively. We have

�R1 = β(1 − c1)

τ2 + μ + γ
, (A2)

�R2 = β(1 − c2)

τ1 + μ + γ
, (A3)

�R12 = β(1 − c12)

μ + γ
. (A4)

If mi �= 0 for i = 1, 2, then patients colonized with bacteria resistant to drug i are always present because they are
constantly entering the hospital. Similarly, patients colonized with bacteria resistant to both drugs 1 and 2 are always
present if m12 �= 0. However, since drug-resistant bacteria are less common in developed countries such as the USA, m1,
m2, and m12 are very small, and we can assume that m1 = m2 = m12 = 0. The total population size in the hospital is
constant, where S + R1 + R2 + R12 + X = 1. Since the population is constant, the system in Figure 1 can be reduced to
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four dimensions. Hence, we only need to study the following system of ordinary differential equations:

dS

dt
= (m − S)μ − (τ1 + τ2 + γ )S + σβ(c1R1 + c2R2 + c12R12)S

+ βS(1 − S − R1 − R2 − R12),

dR1

dt
= −R1μ − (τ2 + γ )R1 + β(1 − c1)R1(1 − S − R1 − R2 − R12) + σβc12R12R1

− σβ(c1S + (c1 − c2)R2)R1,

dR2

dt
= −R2μ − (τ1 + γ )R2 + β(1 − c2)R2(1 − S − R1 − R2 − R12) + σβc12R12R2

− σβ(c2S + (c2 − c1)R1)R2,

dR12

dt
= −R12μ − γR12 + β(1 − c12)R12(1 − S − R1 − R2 − R12)

− σβc12(S + (1 − c1)R1 + (1 − c2)R2)R12 (A5)

There is no disease-free equilibrium because m > 0. One of the boundary equilibria is E0 = (S∗, 0, 0, 0), with

S∗ = β − (μ + τ1 + τ2 + γ ) + √
(μ + τ1 + τ2 + γ − β)2 + 4mβμ

2β
. (A6)

The Jacobian at E0 can be computed as follows:

J0 =
⎛
⎜⎝

β − (μ + τ1 + τ2 + γ ) − 2βS∗ σβc1S
∗ − βS∗ σβc2S

∗ − βS∗ σβc12S
∗ − βS∗

0 J0(2, 2) 0 0
0 0 J0(3, 3) 0
0 0 0 J0(4, 4)

⎞
⎟⎠ , (A7)

where

J0(2, 2) = β(1 − c1)(1 − S∗) − σc1βS∗ − μ − γ − τ2,

J0(3, 3) = β(1 − c2)(1 − S∗) − σc2βS∗ − μ − γ − τ1,

J0(4, 4) = β(1 − c12)(1 − S∗) − σc12βS∗ − μ − γ.

We know that E0 is locally asymptotically stable if and only if all eigenvalues of the matrix J0 have a negative real
part [9]. Since J0 is an upper triangular matrix, it is easy to obtain the eigenvalues of J0, namely

λ01 = β − (μ + τ1 + τ2 + γ ) − 2βS∗,

λ02 = J0(2, 2) = β(1 − c1)(1 − S∗) − σc1βS∗ − μ − γ − τ2,

λ03 = J0(3, 3) = β(1 − c2)(1 − S∗) − σc2βS∗ − μ − γ − τ1,

λ04 = J0(4, 4) = β(1 − c12)(1 − S∗) − σc12βS∗ − μ − γ.

Since

λ01 = β − (μ + τ1 + τ2 + γ ) − [β − (μ + τ1 + τ2 + γ ) +
√

(μ + τ1 + τ2 + γ − β)2 + 4mβμ]
= −

√
(μ + τ1 + τ2 + γ − β)2 + 4mβμ < 0,

we only need to make λ02 < 0, λ03 < 0, λ04 < 0 in order to guarantee the local stability of E0. Notice that

λ02 < 0 ⇔ β(1 − c1)(1 − S∗) < σc1βS∗ + μ + γ + τ2

⇔ β(1 − c1)(1 − S∗)
μ + γ + τ2

<
σc1βS∗

μ + γ + τ2
+ 1

⇔ �R1 <
σc1βS∗

(1 − S∗)(μ + γ + τ2)
+ 1

1 − S∗ .

(A8)

This can also be expressed as

λ02 < 0 ⇔
[
(1 − S∗) − σS∗ c1

1 − c1

]
�R1 < 1, (A9)

where (1 − S∗) is the proportion available for primary colonization at E0 and σS∗(c1/1 − c1) is the proportion of R1
infections recolonized by S∗ bacteria at E0. The difference of these two terms is the reduction factor in the transmission
of R1 at E0 due to established S-type colonizations.
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Similarly, we can derive the following inequalities from λ03 < 0 and λ04 < 0, respectively, such that

λ03 < 0 ⇔ �R2 <
σc2βS∗

(1 − S∗)(μ + γ + τ1)
+ 1

1 − S∗ (A10)

⇔
[
(1 − S∗) − σS∗ c2

1 − c2

]
�R2 < 1, (A11)

λ04 < 0 ⇔ �R12 <
σc12βS∗

(1 − S∗)(μ + γ )
+ 1

1 − S∗ (A12)

⇔
[
(1 − S∗) − σS∗ c12

1 − c12

]
�R12 < 1. (A13)

Therefore, we have the following:

Theorem E0 = (S∗, 0, 0, 0) is locally asymptotically stable if and only if the following holds

RS = max

([
(1 − S∗) − σS∗ c1

1 − c1

]
�R1 ,

[
(1 − S∗) − σS∗ c2

1 − c2

]
�R2 ,

[
(1 − S∗) − σS∗ c12

1 − c12

]
�R12

)
,

(A14)
where

S∗ = β − (μ + τ1 + τ2 + γ ) + √
(μ + τ1 + τ2 + γ − β)2 + 4mβμ

2β
.

When RS < 1, then �R1 , �R2 , �R12 < 1. Since we are studying the persistence of resistant strains, this is the equilibrium
of interest.
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