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conditions needed for the occurrence of a drastic
transition between epidemiological states, is central
to the study of the transmission dynamics and
control of diseases like dengue, influenza, SARS,
and tuberculosis, to name a few. The quantification of
tipping point phenomena goes back to the modeling
and mathematical work of Sir Ronald Ross [86] and
his “students” [72, 73]. The epidemiological modeling
overview in this entry offers a personal perspective
on the role of mathematical models in the study of
the dynamics, evolution, and control of infectious
diseases. The emphasis is on epidemiological modeling
thinking which refers to the use of contagion models
in the study of the transmission dynamics of infectious
diseases as well as socio-epidemiological processes.
Sir Ronald Ross was awarded the first Nobel Prize
in Physiology or Medicine in 1902 for “his work
on malaria, by which he has shown how it enters
the organism and thereby has laid the foundation
for successful research on this disease and methods
of combating it.” (http://nobelprize.org/nobel prizes/
medicine/laureates/1902/) Ross proceeded to confront
the challenges associated with understanding and
managing malaria patterns at the population level
right after the completion of his fundamental research.
His commitment to use his discoveries to improve
the lives of those housed in malaria-infected areas
brought him into the realm of dynamic mathematical
models. Ross’ writings implicitly emphasized the value
of mathematical models as integrators of multi-level
information. His malaria mathematical framework
led to the development of the mathematical theory
of infectious diseases (an outstanding review of the
field can be found in Hethcote [65]). Ross’ approach
provides a wonderful cross-disciplinary example of the
study of phenomena whose dynamics are intimately
connected to processes across organizational, and
temporal scales. We conclude, nearly a century after
Ross’ seminal contributions to the mathematical theory
of infectious diseases (placed in the appendix of
his 1911 paper), that the field of mathematics has
been enriched by his use of models in addressing
the biggest health challenge of his time (an
excellent contemporary description of Ross’ malaria
model and its analysis is found in Aron and May
[8]).

Malaria, a highly prevalent disease in many parts
of the world, may become established following the
arrival of few infected individuals to a malaria-free

zone. Successful invasions are started by infectious
founding cohorts capable of generating sufficient sec-
ondary infections before recovery (or death) from the
disease. Sufficient is interpreted in many ways: the
initial population of infected individuals manages to
generate a pattern of exponential growth in the number
of secondary infections during the initial phase of
the outbreak or alternatively the average number of
secondary infections generated, within a large disease-
free population, exceeds the critical population thresh-
old (critical population size of infected individuals)
required for the establishment of the disease [4, 15].
The loss of susceptible individuals to infection can
be thought of as a process of resource depletion as
well [46]. Malariologists learned, from the pioneering
work of Ross, that bringing the vector population
below a minimal size is critical to malaria control.
Unfortunately, the consequences of frontal attacks on
malaria, such as those conducted in the past with DDT,
can have unintended serious consequences [52].

The effective use and dissemination of epidemio-
logical thinking suggests that the “contagion” model
is indeed part of our daily culture. For example, the
use of epidemiological models and concepts helped
journalist M. Gladwell [51] understand the reasons
behind the dramatic reductions in car thefts and vio-
lent crimes in NY City in the 1990s. Gladwell sees
“contagion” processes as engines capable of generating
epidemics of criminal activity. In fact, through his use
of epidemiological concepts, he identifies mechanisms
capable of explaining the abrupt decline in criminal
activity experienced over a relatively short period of
time in NY City. “There is probably no other place in
the country where violent crime has declined so far,
so fast,” Gladwell observes. The importance of these
remarks is enhanced by a perspective that sees the
growth of criminal activity as the result of “intense”
interactions between susceptible and criminally active
individuals. The introduction of a dynamic model-
ing framework in epidemiology increases the toolbox
available to researchers that primarily rely on statistical
methods. Contagion models, the generators of time-
dependent patterns of disease spread, can be used
to track a disease over time or evaluate the effec-
tiveness of specific intervention measures. Gladwell’s
arguments support the view that the measures put in
place in NY City (and the nation) were responsible for
reductions in the number and/or in the quality of con-
tacts between criminals and susceptible individuals.

http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
http://nobelprize.org/nobel_prizes/medicine/laureates/1902/
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Gladwell concludes (as Ross had done it in 1911) that
the impact of such contact-reduction measures was
sufficient to result in the dramatic reduction in the size
of the population of criminals (the criminal core). In
other words, the goal of putting policies in place, that
brings the criminal core below the minimal size needed
for the persistence of a sustainable culture of criminal
activity, was achieved in NY City. The term tipping
point, the subject of Gladwell’s popular book [53],
corresponds in this context, to the identification of the
minimal critical size that an “infectious” subpopulation
must maintain to thrive and survive. Related important
theoretical work, in the context of sexuallytransmitted
diseases, was carried out by Hethcote and Yorke [67].
The work of these researchers continues to have a
significant impact on the development of public health
policies in the context, for example, of gonorrhea
and/or HIV/AIDS [19, 66].

The main goal of this entry is to provide an intro-
ductory, limited, and personal perspective on the role
and use of epidemiological models in the study of
infectious diseases and contagion processes in general.
It is our hope that this brief entry will convince the
reader of the value of epidemiological concepts and
models in life and social sciences.

The Basic ContagionModel

W.O. Kermack (a statistician) and A.G. McKendrick (a
medical doctor) applied Sir Ronald Ross’ ideas to the
study of the transmission dynamics of human infec-
tious diseases. Specifically, these researchers applied
Ross’ ideas to diseases whose transmission dynamics
depend on the frequency and intensity of the inter-
actions between susceptible and infected individuals
(handshakes or other forms of close intimate associ-
ations). Their foundational results published in their
1927 article [72] (with extensions in Kermack and

McKendrick [73,74]) continue to play a critical role in
the mathematical theory of infectious diseases. We out-
line some of their ideas, the basic contagion model, and
their threshold result in a rather idealized setting. It is
assumed that the communicable disease under consid-
eration does not cause a significant number of deaths
(measles or chicken pox, or a mild strain of influenza,
or a rhinovirus) and that the time scale of interest is
so short, that the population’s vital dynamics can be
“safely” ignored. The disease’s introduction is assumed
to take place within a population of individuals with
no prior history of infections. Individuals are found
in three stages: uninfected and susceptible; infected
(assumed infectious), and recovered (assumed to be
permanently immune). Table 1 collects the state vari-
ables and parameters of the model. Figure 1 provides
a diagram with the transitions that members of this
population may experience as the disease spreads. It
is assumed that individuals mix at “random,” that is,
the rate of encounters (contacts) between susceptible
and susceptible, infectious and recovered individuals
depends primarily on the frequency of each type.

S I R

S E I T

SIR diagram

TB diagram

Epidemiology Modeling, Fig. 1 Diagrams for SIR and TB
model

Epidemiology Modeling, Table 1 Parameter definitions

State variables Description Parameters Description

S.t/ Susceptible population at time t c Average number of contacts per individual
I.t/ Infected population at time t q Average proportion of contacts with an

infectious individual needed for transmission
R.t/ Recovered population at time t � Per-capita recovery rate
N.t/ Total population size

(N.t/ D S.t/C I.t/C R.t/)
ˇ D cq Per susceptible and per infective transmission rate
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Hence, the average number of effective contacts per
susceptible with infectious individuals is ˇ I

N
. The

average rate of new infections per unit of time, or
the so-called incidence rate, is modeled by ˇS I

N
. The

use of these definitions and assumptions lead to the
following simple version of the Kermack–McKendrick
model:

dS

dt
D �ˇS I

N
;

dI

dt
D ˇS

I

N
� �I; (1)

dR

dt
D �I;

with S.0/ D S0, I.0/ D I0 > 0, and R.0/ D 0.
It quickly follows that d

dt
.S C I C R/ D 0 which

implies that N must be constant. Further, the intro-
duction of a small number of infectious individuals,
given that N is large, leads to the following reasonable
approximation of the model dynamics (at the start of
the outbreak): dI

dt

 .ˇ � �/I [S.0/ 
 N ]. Conse-

quently, I.t/ D e.ˇ��/t I0 accounts for changes in the
infectious class at the start of the outbreak (exponential
growth or decay). This type of approximation (finding
expressions that capture the dynamics generated by a
small number of infectious individuals) is routinely
used to asses, the potential for an epidemic outbreak.
We conclude that if ˇ

�
> 1 the disease will take off (an

epidemic outbreak), while if ˇ

�
< 1 the disease will die

out. ˇ

�
, known as the Basic Reproductive Number or

R0, defines a threshold that determines whether or not
an outbreak will take place (crossing the line R0 D 1).
R0, a dimensionless quantity, is the product of the av-
erage infectious period .1=�/ (window of opportunity)
times the average infectiousness (ˇ) of the members
of the small initial population of infectious individuals
(I0). ˇ measures the average per-capita contribution
of the infectious individuals in generating secondary
infectious, per unit of time, within a population of
mostly susceptibles (S.0/ 
 N ). R0 is most often
defined as the average number of secondary infectious
generated by a “typical” infectious individual after its
introduction in a population of susceptibles [40, 58].
ComputingR0 is central in most instances to the study
of the dynamics and control of infectious diseases
(but see [45]). Hence, efforts to develop methods for
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Epidemiology Modeling, Fig. 2 The s-i phase diagram is
plotted under two different values of R0 (R0 D 1:7; 3:4)

computing R0, in settings that involve the interactions
between heterogenous individuals or subpopulations,
are important [28, 40, 41, 43, 47, 58–61, 96].

Since the population under consideration is con-
stant, the state variables can be re-scaled (e.g., s D
S=N ). Letting s, i , and r denote the fraction of sus-
ceptible, infectious, and recovered, respectively, leads
to the following relationship (derived by dividing the
second equation by the first in Model (1)) between the
s and i proportions:

di

ds
D �1C �

ˇs
: (2)

Figure 2 displays the s-i phase diagram for two dif-
ferent values of R0 (R0 D 1:7; 3:4). For each value of
R0, three different initial conditions are used to simu-
late an outbreak and, in each case, the corresponding
orbits are plotted. The parameter values are taken from
Brauer and Castillo-Chavez [15]. A glance at Model
(1) allows us to show that s.t/ is decreasing and that
limt!0 s.t/ D s1 > 0. The integration of (2) leads to
the relationship:

ln
s0

s1
D R0

h

1 � s1
i

; (3)

where 1 � s1 denotes the fraction of the population
that recovered with permanent immunity. Equation (3)
is referred to as the final epidemic size relation [15,63].
Estimates of the proportions s0 and 1 � s1 can be
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Epidemiology Modeling, Table 2 Parameter definitions

State variables Definitions Parameters Definitions

S Susceptible � Recruitment of new susceptible
E Exposed (asymptomatic and noninfectious) ˇ Transmission rate per susceptible and infectious
I Infectious (active TB) �, d Natural and disease-induced mortalities
T Treated still partially susceptible k, � Per-capita progression and treatment rates
N Total population N D S C E C I C T �ˇ, 0 � � � 1 Transmission rate per treated and infectious

p, 0 � p � 1 Susceptibility to reinfection

obtained from random serological studies conducted
before and immediately after an epidemic outbreak.
Independent estimates for the average infectious period
(1=� ) for many diseases are found in the literature.
The use of priori and posteriori serological studies
can be combined with independent estimates of the
disease’s infectious period to estimate ˇ via (3) (see
[64]). Efforts to develop methods for connecting mod-
els to epidemiological data and for estimating model
parameters have accelerated, in part, as a result of the
2003 SARS outbreak [30]. Estimates of a disease’s
basic reproduction number are now routinely computed
directly from data [32–34,36,37,62]. Efforts to identify
final epidemic size relations like those in (3) have
received considerable attention over the past few years
as well (see [7, 17] and references therein). Most
recently estimates of the basic reproductive number
for A-H1N1 influenza were carried out by modelers
and public health researchers at Mexico’s Ministry
of Health [35]. These estimates helped the Mexican
government plan its initial response to this influenza
pandemic. The value of these estimates turned out to
be central in studies of the dynamics of pandemic
influenza [62].

Backward Bifurcation: EpidemicsWhen
R0 < 1

The question of whether epidemic outbreaks are pos-
sible when R0 < 1 (backward bifurcation) has led
to the study of models capable of sustaining multiple
endemic states, under what appear to be paradoxi-
cal conditions. The study of hysteresis has received
considerable attention in epidemiology particularly,
after relevant theoretical results on mathematical mod-
els of infectious diseases appeared in the literatures
[24, 57, 68]. The model for the transmission dynamics
of tuberculosis (TB) provides an interesting introduc-
tion to the relevant and timely issue of hysteresis

behavior [48]. A brief introduction to the epidemiology
of TB is outlined before the model (in Feng et al.
[48]) is introduced. Tuberculosis’ causative agent is
mycobacterium tuberculosis. This mycobacterium, car-
ried by about one third of the world human population,
lives most often within its host, on a latent state and, as
a result, this mycobacterium often becomes dormant
after infection. Most infected individuals mount effec-
tive immune responses after the initial “inoculation”
[5, 6, 13, 79]. An effective immunological response
most often limits the proliferation of the bacilli and,
as a result, the agent is eliminated or encapsulated
(latent) by the host’s immune system. Tuberculosis was
one of the most deadly diseases in the eighteenth and
nineteenth centuries. Today, however, only about eight
million individuals develop active TB each year (three
million deaths) in the world, a “small” fraction in a
world, where about two billion individuals live with
this mycobacterium [91]. Latently infected individuals
(those carrying the disease in a “dormant” state) may
increase their own re-activation rate as a result of
continuous exposure to individuals with active TB
(exogenous re-activation). The relevance of exogenous
re-activation on the observed TB prevalence patterns at
the population level is a source of debate [48, 90, 93].
The model in Feng et al. [48] was introduced to
explore the role that a continuous exposure to this
mycobacterium may have in accelerating the average
population TB progression rates [21, 23, 48, 90, 93]. It
was shown that exogenous re-activation had indeed the
potential for supporting backward bifurcations [48]. In
order to describe a TB model that supports multiple
positive endemic states, we proceed to divide the host
population in four epidemiological classes: suscepti-
ble, exposed (latently infected), infectious, and treated.
The possible epidemiological transitions of individuals
in this population are captured in the second diagram
in Fig. 1, while the definitions of the parameters and
state variables are collected in Table 2.
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The generation of new E-individuals per unit of
time (E-incidence) comes from two subpopulations
and therefore, it involves the terms: BS D ˇS I

N

and BT D �ˇT I
N

. The generation of new active
cases, the result of reinfection, is modeled by the term
BE D pˇE I

N
. The definitions in Table 2 and the

assumptions just described lead to the following model
for the transmission dynamics of TB under exogenous
reinfection:

dS

dt
D � � BS.t/ � �S;

dE

dt
D BS.t/ � BE.t/ � .�C k/E C BT .t/; (4)

dI

dt
D kE CBE.t/ � .�C � C d/I;

dT

dt
D �I � BT .t/ � �T:

Model (4) indeed allows for the possibility of ex-
ogenous reinfection but only when p > 0. The basic
reproduction number can be computed using various
methods [28, 40, 43] all leading to

R0 D
� ˇ

�C � C d

�� k

�C k

�

: (5)

R0 is the number of E individuals “generated” from
contacts between S and typical I -individuals (when
every body is susceptible, i.e., when S.0/ 
 �

�
) during

the critical window of opportunity, that is, over the av-
erage length of the infectious period, namely, ˇ

�C�Cd .
R0 is computed by multiplying the average infectious
period times the proportion of latent individuals ( k

�Ck )
that manage to reach the active TB-stage. R0 > 1

means that the average number of secondary active
TB cases coming from the S -population is greater
than one, while R0 < 1 corresponds to the situation
when the average number of secondary active TB
cases generated from the S population is less than
one. In the absence of reinfection, one can show that
if R0 � 1 then I.t/ decreases to zero as t ! 1
while if R0 > 1 then I.t/ ! I1 > 0. In the first
case, the infection-freestate .�=�; 0; 0; 0/ is globally
asymptotically stable, while in the latter there exists

a unique locally asymptotically stable endemic state
.S� > 0;E� > 0; I� > 0; T � > 0/. The dynamics
of Model (4) are therefore “ generic” and illustrated
in Fig. 4 (bifurcation diagram and simulations). In the
generic case, the elimination of the disease is feasible
as long as the control measures put in place manage
to alter the system parameters to the point that no
TB outbreak is possible under the new (modified)
parameters. In summary, if the model parameters jump
from the region of parameter space where R0 > 1 to
the region where R0 < 1 then the disease is likely to
die out.

In the presence of exogenous reinfection (p >

0) the outcomes may no longer be “generic.” It was
established (in Feng et al. [48]) that whenever R0 < 1

there exits a p0 2 .0; 1/ and an interval Jp D .Rp; 1/

with Rp > 0 (p > p0) with the property that
whenever R0 2 Jp , exactly two endemic equilibria
exist. Further, only one positive equilibrium is possible
whenever Rp D R0 and no positive equilibria exists if
Rp < R0. The branch of endemic equilibria bifurcating
“backward” from the disease-free equilibrium at R0 D
1 is shown in Fig. 3 (left). Figure 3 (right) illustrates the
asymptomatic behaviors of solutions when p > p0 and
Rp < R0 < 1 (p D 0:4 and R0 D 0:87). A forward
bifurcation diagram of endemic steady states is also
plotted in Fig. 4 (left). Figure 4 is generated from
the model in the absence of exogenous reinfection
(p D 0). Figure 4 (right) displays the asymptomatic
behavior of solutions when R0 D 1:08 under various
initial conditions. The parameter values were taken
from Feng et al. [48]. For an extensive review of TB
models, see Castillo-Chavez and Song [22].

The identification of mechanisms capable of sup-
porting multiple endemic equilibria in epidemic mod-
els was initially carried out in the context of HIV dy-
namics by Huang et al. [24, 45, 68]. These researchers
showed that asymmetric transmission rates between
sexually active interacting populations could lead to
backward bifurcations. Hadeler and Castillo-Chavez
[57] showed that in sexually active populations, with
a dynamic core, the use of prophylactics or the im-
plementation of a partially effective vaccine could
actually increase the size of the core group. Further,
such increases in the effective size of the core may
generate abrupt changes in disease levels, that is, the
system may become suddenly capable of supporting
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Epidemiology Modeling, Fig. 3 Backward bifurcation (p D
0:4): a bifurcation diagram of endemic steady states is displayed
(left). The numbers of infectious individuals as functions of

time with various I0 are plotted when R0 D 0:87 (right). The
outcomes (I1 > 0 or I1 D 0) of the simulation depend on the
initial condition (value of I.0/)
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Epidemiology Modeling, Fig. 4 Forward bifurcation (p D 0): a bifurcation diagram of endemic steady states is displayed (left).
The numbers of infectious individuals as functions of time with various I0 are plotted when R0 D 1:08 (right)

multiple endemic states (backward bifurcation). In the
next section, control measures that account for the
cost of interventions in an optimal way are introduced
in the context of the TB model discussed in this
section.

Optimal Control Approaches: The Cost
of Epidemics

The use of optimal control in the context of contagion
models has a long history of applications in life and

social sciences. Recent contributions using optimal
control approaches (from influenza to drinking) have
generated insights on the value of investing on specific
public health policies [55, 76–78]. Efforts to assess the
relative effectiveness of intervention measures aimed
at reducing the number of latently and actively TB
infectious individuals at a minimal cost and over finite
time horizons can be found in the literature [69]. We
highlight the use of optimal control in the context
of Model (4). Three, yet to be determined, control
functions (policies): ui .t/ W i D 1; 2; 3 are introduced.
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EpidemiologyModeling, Fig. 5 Low-risk TB community: the
optimal controls (u1.t /, u2.t /, and u3.t /) and state variables are
displayed as functions of time. The black solid, blue dotted, and

red dashed curves represent the cases of without controls, (B1 D
100; B2 D 10; B3 D 10), and (B1 D 100; B2 D 10; B3 D 100)
with controls, respectively (Figures taken from [29])
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These three policies are judged on their ability to
reduce or eliminate the levels of latent- and active-
TB prevalence in the population at a reduced cost.
In this TB setup, exogenous reinfection plays a role
and therefore the optimization process must account
for such a possibility. It is important, therefore, to
identify optimal strategies in low-risk TB communi-
ties where the disease is endemic, despite the exis-
tence of effective public health norms (R0 < 1) as
well as in high-risk TB communities, R0 > 1 (the
dominant scenario in parts of the world where TB
is highly endemic). Three controls or time-dependent
intervention policies yet to be computed are introduced
as multipliers to the incidence and treatment rates:
BS.t/ D ˇ.1 � u1.t//SI=N , BE.t/ D pˇ.1 �
u1.t//EI=N , BE.t/ D �ˇ.1 � u2.t//TI=N , and
�u3.t/. The first control, u1.t/, works at reducing
contacts with infectious individuals through policies of
isolation, or social distancing, or through the adminis-
tration (if available) of vaccines or drugs that reduce
susceptibility to infection. The second control, u2.t/,
models the effort required to reduce or prevent the
reinfection of treated individuals. This control is not
identical to u1.t/ since individuals with prior TB bouts
are likely to react differently in the presence of active-
TB cases. The treatment control, u3.t/, models the
effort directed at treating infected individuals. The goal
of minimizing the number of exposed and infectious
individuals while keeping the costs as low as possible
requires access to data that is rarely available. Hence,
the focus here is on the identification of solutions that
only incorporate the relative costs associated with each
policy or combination of policies. The identification
of optimal policies is tied in to the minimization of a
functional J (defined below), over the feasible set of
controls (ui .t/ W i D 1; 2; 3), subject to Model (4) over
a finite time interval Œ0; tf . The objective functional is
given by the expression:

J.u1; u2; u3/ D
Z tf

0

ŒE.t/C I.t/C B1

2
u1
2.t/

CB2

2
u2
2.t/C B3

2
u3
2.t/dt (6)

where the coefficients B1;B2, and B3 model constant
relative cost weight parameters. These coefficients ac-
count for the relative size and importance (including
cost) of each integrand in the objective functional. It is
standard to assume that the controls are nonlinear and

quadratic. The objective, therefore, is to find numeri-
cally the optimal control functions, u�

1 , u�
2 , and u�

3 that
satisfy

J.u�
1 ; u

�
2 ; u

�
3 / D min

˝
J.u1; u2; u3/; (7)

where ˝ D f.u1; u2; u3/ 2 .L2.0; tf //
3jai � ui �

bi ; i D 1; 2; 3g and ai ; bi ; i D 1; 2; 3 are lower and
upper bounds for the controls, respectively. Pontrya-
gin’s maximum principle [50, 85] is used to solve the
optimality system, which is derived and simulated fol-
lowing the approaches in Choi et al. [29], and Lee et al.
[76]. We manage to identify optimal control strategies
through simulations when R0 > 1 and R0 < 1 using
reasonable TB parameters [29]. The optimal controls
and corresponding states are displayed in Figs. 5 and
6 under two distinct scenarios: under a low-risk TB
community (R0 D 0:87) and under a high-risk TB
community (R0 D 1:38). It is observed that the social
distancing control, u1.t/, is the most effective when
R0 < 1, while the relapse control, u2.t/, is the most
effective when R0 > 1. Further, simulation results
suggest that when R0 < 1, the control strategy cannot
work without the presence of u1.t/. Similarly, when
R0 > 1, u2.t/ must be present. With the presence
of u1.t/ when R0 < 1 and the presence of u2.t/
when R0 > 1, the identified optimal control programs
will effectively reduce the number of exposed and
infectious individuals.

Perspective on Epidemiological Models
and Their Use

Epidemiological thinking has transcended the realm
of epidemiological modeling and in the processes, it
has found applications to the study of dynamic social
process where contacts between individuals facilitate
the buildup of communities that can suddenly (tipping
point) take on a life of their own. This perspective
has resulted in applications of the contagion model
in the study of the dynamics of bulimia [54], or in
the study of the spread of specific scientific ideas
[11], or in the assessment of the emergence of new
scientific fields [12]. Contagion models are also being
used to identify population-level mechanisms respon-
sible for drinking patterns [81, 87] or drug addic-
tion trends [92]. Contagion models have also been
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applied to the study of the spread of fanaticism [22]
or the building of collaborative learning communi-
ties [38].

It is still in the context of the study of disease
dynamics and in the evaluation of specific public policy
measures that most of the applications of epidemio-
logical models are found. Efforts to understand and
manage the transmission dynamics of HIV [19, 24,
70, 95] or to respond to emergencies like those posed
by the 2003 SARS epidemic [30], or the 2009 A-
H1N1 influenza pandemic [35, 62], or to assess the
potential impact of widely distributed rotavirus vac-
cines [88, 89] are still at the core of most of the
research involving epidemiological mathematical mod-
els. The events of 9/11/2001 when our vulnerability
to bioterrorism was exposed in fronts that included
the deliberate release of biological agents has brought
contagion and other models to the forefront of our
battle against these threats to our national security
(see [10]).

A series of volumes and books [1,3,9,15,16,20,26,
27,36,39,56,71,94,97] have appeared over the past two
decades that highlight our ever present concern with
the challenges posed by the transmission dynamics
and evolution of infectious diseases. The contagion
approach highlighted here relies primarily on the use
of deterministic models. There is, however, an exten-
sive and comprehensive mathematical epidemiological
literature that has made significant and far-reaching
contributions using probabilistic perspectives [1, 2, 9,
36, 39]. The demands associated with the study of dis-
eases like influenza A-H1N1 or the spread of sexually
transmitted diseases (including HIV) in the context of
social landscapes that change in response to knowl-
edge, information, misinformation, or the excessive
use of drugs (leading to drug resistance) have brought
to the forefront of the use of alternative approaches
including those that focus on social networks, into
the study of infectious diseases [31, 42, 44, 82, 83].
Renewed interest in the characterization and study of
heterogenous mixing patterns and their role on disease
dynamics have also reemerged [14, 18, 25, 75, 80, 84].
Contagion models continue to contribute to our under-
standing of “contact” processes that change in response
to behavioral decisions [49]. It is our hope that this id-
iosyncratic overview has captured the fundamental role
that epidemiological models play and will continue to
play in the study of human process of importance in
life and social sciences.
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