Protecting children in low-income and middle-income countries from COVID-19


A saving grace of the COVID-19 pandemic in high-income and upper-middle-income countries has been the relative sparing of children. As the disease spreads across low-income and middle-income countries (LMICs), long-standing system vulnerabilities may tragically manifest, and we worry that children will be increasingly impacted, both directly and indirectly. Drawing on our shared child pneumonia experience globally, we highlight these potent impacts on children in LMICs and propose actions for a collective response.

Current data suggest children are susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but are less likely than adults to become severely ill.1-4 Although at first glance these data appear reassuring, the child pneumonia, and broader global child health, experience provides a forewarning of what may be coming in LMICs. High-income countries (HICs) have an under-5 pneumonia mortality rate of 3 per 100 000.5 In contrast, the rate in LMICs is 200 per 100 000 population, with pneumonia the leading infectious cause of under-5 death globally.6 While yet unknown, COVID-19, a viral pneumonia syndrome, may impact children in LMICs more severely than what has been observed to date.

The risk factors for poor outcomes in pneumonia are overwhelmingly more prevalent in LMICs than HICs. These include severe malnutrition, low immunisation uptake, nutritional anaemia, HIV exposure or infection, air pollution, poverty, low parental education and, crucially, limited access to high-quality acute healthcare.6,7 In HICs, vulnerable children are being actively ‘shielded’ from infection, but in LMICs, most will remain exposed.

The indirect effects of the COVID-19 response need attention as they are an enormous threat to the well-being of children. These include widespread parental unemployment, disrupted education, food and housing insecurity and threats to vital preventive health programmes, like immunisation, antenatal care, infant feeding and mental health. The acute care workforce may soon be overwhelmed by COVID-19 needs, and we anticipate critical healthcare services being diverted away from mothers and children. Delays in care seeking may worsen, resulting in more severe illness. So, while transmission of respiratory pathogens may be slowed by pandemic response measures, these measures could accentuate well-established risk factors for poor paediatric outcomes and undermine healthcare systems’ abilities to respond.
What can be done to protect children in LMICs? First, we must prevent the collapse of vital acute care (oxygen, antibiotics, personal protective equipment (PPE)), preventive services (immunisation, maternity care, breastfeeding and nutrition programmes, HIV and malaria prevention) and supply chains and take opportunities for system strengthening that could be a legacy of the pandemic. Maintaining a critical workforce in maternal and child health, enabling healthcare workers to use PPE and empowering community health workers to engage with communities in the response are essential. These measures, taken locally with decisive international support, are likely to save more children’s lives than advanced intensive care and should benefit children with COVID-19 and other illnesses, including pneumonia.

Second, COVID-19 testing in LMICs needs massive upscaling and outreach. If we are to understand paediatric COVID-19, surveillance systems—both pandemic and pneumonia focused—need investment for rapid scale-up and testing of children with respiratory illnesses for SARS-CoV-2, testing paediatric contacts of adult cases and accurately reporting child deaths.

Third, pandemic lockdown strategies should maintain vital access to care and be tailored to the particular social, economic and health environments of LMICs. This may not mean following the approach of HICs. Rather, LMICs should also build on their experience and expertise gained during other epidemics and make decisions based on their reality, workforce capacity, population density and migration patterns. Examples could be establishing separate areas in clinics for preventative care by dedicated non-respiratory staff, home vaccination visits, outposts responsible for delivery of household essentials to COVID-19 affected households, retraining newly unemployed people to assist with case finding and contact tracing and sewing groups to produce face masks to support widespread mask strategies.

Fourth, research is key to better understanding COVID-19 fundamentals on children, younger and older, including their role in transmission dynamics, spectrum of illness and outcomes, the impact of comorbidities and common coinfections (viral, bacterial, mycobacterial and parasitic) and how broader pandemic responses impact on health behaviours and outcomes. To accomplish this requires COVID-19 surveillance and rapid cycle research on the effects of pandemic response strategies and context-informed modelling using the best available data and locally relevant assumptions. Understanding COVID-19 in children is essential to developing informed, nuanced pandemic responses, including eventual vaccination strategies. These efforts must be country-driven, network-building, joint global initiatives supported by the international community for the benefit of all.

We expect children in LMICs may be seriously impacted by COVID-19, potentially both directly and indirectly. Balanced strategies that protect children must be central to coordinated and cooperative global pandemic response efforts.

Author affiliations
1Projahmmo Research Foundation, Dhaka, Bangladesh
2NHIF Global Health Unit on Respiratory Health (RESPIRE), London, United Kingdom
3University of North Carolina Project Malawi, Lilongwe, Malawi
4Department of Pediatrics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
5KEMRI-Wellcome Trust Research Programme, Nairobi, Kenya
6Malaria Consortium, London, United Kingdom
7Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
8Center for Global Health, Usher Institute, University of Edinburgh Medical School, Edinburgh, United Kingdom
9Division of Pulmonary and Critical Care, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
10Dhaka Hospital, Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
11Global Health Institute, University College London, London, United Kingdom
12Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
13Paediatric Intensive Care Unit, Royal Children’s Hospital, Melbourne, Victoria, Australia
14Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
15School of Medicine and Health Sciences, University of Papua New Guinea, Goroka, Papua New Guinea
16Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxfordshire, United Kingdom
17Division of Paediatric Pulmonology, Department of Paediatrics, College of Medicine and University College Hospital, Ibadan, Nigeria
18Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
19Clinical Trial Center, University of Washington, Seattle, United States
20Centre for International Child Health, Menzies, University of Melbourne, Melbourne, Victoria, Australia
21Department of Paediatrics, University College Hospital Ibadan, Ibadan, Nigeria
22Division Paediatric Pulmonology, Department of Paediatrics, University of Cape Town, Cape Town, South Africa
23Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
24Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
25Department of Pediatrics, Section of Pediatric Emergency Medicine, Baylor College of Medicine, Houston, United States
26Pulmonology & Infectious Disease Unit, Department of Paediatrics & Child Health, University of Ilorin/University of Ilorin Teaching Hospital, Ilorin, Nigeria
27Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
28Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
29Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, United States
30Instituto de Investigación Nutricional, Lima, Peru
31Department of Pediatrics, School of Medicine, Vanderbilt University, Nashville, Tennessee, United States
32Community Health Sciences Unit, Malawi Ministry of Health, Lilongwe, Malawi
33MRC Unit, The Gambia at LSHTM, Fajara, Gambia
34Faculty of Infectious & Tropical Diseases, LSHTM, London, United Kingdom
35Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
36Center for Health Studies, Universidad del Valle de Guatemala, Guatemala City, Guatemala
37Divisions of Pulmonary Medicine and Global Health, Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
38Department of Child Health, University of Benin Teaching Hospital, Benin City, Nigeria
39Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
40Department of Infectious Diseases, Imperial College London, London, United Kingdom
41Baylor College of Medicine Children’s Foundation – Lesotho, Maseno, Lesotho


None declared.

Contributors EDM, SA and TM wrote the first draft of the comment. EDM, SA, TM, SRCH, NBZ, HRG, CK and ME provided critical review and editing of comment. All authors reviewed subsequent drafts and agreed on the final version of this comment.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient and public involvement Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the Methods section for further details.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; internally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Salahuddin Ahmed http://orcid.org/0000-0001-6771-0638
Tim Colbourn http://orcid.org/0000-0002-6917-6552
Mike English http://orcid.org/0000-0002-7427-0826
Nicholas SS Fancourt http://orcid.org/0000-0002-1772-9960
Hamish R Graham http://orcid.org/0000-0003-2461-0463
Shubhada Hooli http://orcid.org/0000-0003-4596-448X
Peter P Moschos http://orcid.org/0000-0002-9664-5959
Brian Wahl http://orcid.org/0000-0002-0037-7364
Eric D McCollum http://orcid.org/0000-0002-1872-5566

REFERENCES